V.1 DEFINICIÓN DE MATRIZ

Una matriz es un conjunto de números, objetos u operadores, dispuestos en un arreglo bidimensional de renglones y columnas, encerrados entre paréntesis rectangulares, que obedecen a ciertas reglas algebraicas.

Ejemplos de matrices:

\[
\begin{bmatrix}
1 & -8 \\
6 & 10
\end{bmatrix},
\begin{bmatrix}
7 & 1 & 5 \\
0 & -1 & 2
\end{bmatrix},
\begin{bmatrix}
a & b \\
c & d \\
e & f \\
g & h
\end{bmatrix},
\begin{bmatrix}
3 + 2i & 5 - 7i
\end{bmatrix}
\]

Cada una de las partes integrantes del arreglo es llamado elemento de la matriz y su localización en el arreglo es identificado por un sistema de doble subíndice, en el cual el primer subíndice indica el renglón y el segundo subíndice indica la columna.

\[
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1m} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2m} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nm}
\end{bmatrix}
\]

En donde el elemento \(a_{ij}\) está localizado en el renglón \(i\)-ésimo y la \(j\)-ésima columna del arreglo \(A\).

Una matriz que tiene \(n\) renglones y \(m\) columnas se dice que es una matriz de orden \(n \times m\) (se lee como matriz de orden \(n\) por \(m\)).

Cuando se trata de matrices muy grandes se representan con una sola letra mayúscula, o por un solo elemento con doble índice:

\[
A = [a_{ij}]
\]

donde \(i\) va desde 1 hasta \(n\) y \(j\) va desde 1 hasta \(m\)

Una matriz con un solo renglón o con una sola columna es conocida como vector renglón o vector columna respectivamente. Por ejemplo, la matriz \(B\) es un vector renglón de \(1 \times 5\) y la matriz \(C\) es un vector columna de \(3 \times 1\):

\[
B = \begin{bmatrix}
b_1 & b_2 & b_3 & b_4 & b_5
\end{bmatrix},
C = \begin{bmatrix}
c_1 \\
c_2 \\
c_3
\end{bmatrix}
\]
Una matriz es *cuadrada* si posee el mismo número de renglones y de columnas:

Ejemplo.

\[
D = \begin{bmatrix}
4 & -2 & 6 & 1 \\
-7 & 0 & -8 & -3 \\
1 & 10 & 5 & 4 \\
3 & -4 & 9 & -11
\end{bmatrix}_{4 \times 4}
\]

La *diagonal principal* de una matriz cuadrada es el conjunto de elementos que aparecen sobre la diagonal del arreglo que va desde el extremo superior izquierdo al extremo inferior derecho, es decir, aquellos elementos \(a_{ii}\). En el ejemplo anterior los elementos de la diagonal principal son 4, 0, 5, –11.

La *traza* de una matriz cuadrada es la suma de los elementos de su diagonal principal. Se denota como \(tr(A)\).

Ejemplo.

Para la matriz anterior, su traza es: \(tr(D) = 4 + 0 + 5 + (–11) = –2\)

La *transpuesta* de una matriz \(A\) es la matriz designada por \(A^\top\) en donde los renglones de \(A\) son las columnas de \(A^\top\), esto es, si:

\[
A = [a_{ij}] \quad \Rightarrow \quad A^\top = [a_{ji}]
\]

Ejemplos.

a) \(E = \begin{bmatrix} 5 & -1 & 2 \\ -7 & 3 & 9 \\ -2 & 0 & 8 \\ 6 & -4 & 11 \end{bmatrix}_{4 \times 3}\); \(E^\top = \begin{bmatrix} 5 & -7 & -2 & 6 \\ -1 & 3 & 0 & -4 \\ 2 & 9 & 8 & 11 \end{bmatrix}_{3 \times 4}\)

b) \(F = \begin{bmatrix} a & b & c & d & e \\ f & g & h & i & j \end{bmatrix}_{2 \times 5}\); \(F^\top = \begin{bmatrix} a & f \\ b & g \\ c & h \\ d & i \\ e & j \end{bmatrix}_{5 \times 2}\)

Dos matrices se dice que son *iguales* si son del mismo orden y todos los elementos de la matriz son idénticos a sus correspondientes elementos de la otra matriz.

Ejemplo.

\[
P = \begin{bmatrix} 4 & -1 & 3 & 0 & 8 \\ 6 & 1 & -2 & 5 & -7 \end{bmatrix}_{2 \times 5}; \quad Q = \begin{bmatrix} 8 & 6 & 9 & 0 & -16 \\ 2 & 6 & 3 & 2 & -2 \\ 12 & 4 & 14 & 15 & -28 \\ 2 & 4 & -7 & 3 & 4 \end{bmatrix}_{2 \times 5}\]

\(P = Q\)
V.2 OPERACIONES CON MATRICES

Suma

La suma de matrices $C = A + B$ se define como $c_{ij} = a_{ij} + b_{ij}$. Esto es, la suma de matrices es igual a la suma de los elementos correspondientes de ambas matrices que tienen el mismo orden.

Ejemplo.

$A = \begin{bmatrix} 2 & 6 & -7 & 0 \\ -1 & 11 & 3 & -4 \end{bmatrix}_{2 \times 4}$; $B = \begin{bmatrix} -6 & 8 & -2 & 5 \\ 4 & -2 & 1 & -10 \end{bmatrix}_{2 \times 4}$

$A + B = \begin{bmatrix} -4 & 14 & -9 & 5 \\ 3 & 9 & 4 & -14 \end{bmatrix}_{2 \times 4}$

La operación suma cumple con las siguientes propiedades:

Propiedad asociativa: $(A + B) + C = A + (B + C)$

Propiedad conmutativa: $(A + B) = (B + A)$

Ejemplos.

a) $\left(\begin{bmatrix} 2 & 5 \\ -1 & 3 \end{bmatrix}_{2 \times 2} + \begin{bmatrix} 4 & 8 \\ 3 & 0 \end{bmatrix}_{2 \times 2} \right) + \begin{bmatrix} 11 & -3 \\ 5 & 9 \end{bmatrix}_{2 \times 2} = \begin{bmatrix} 6 & 13 \\ 2 & 3 \end{bmatrix}_{2 \times 2} + \begin{bmatrix} 11 & -3 \\ 5 & 9 \end{bmatrix}_{2 \times 2} = \begin{bmatrix} 17 & 10 \\ 7 & 12 \end{bmatrix}_{2 \times 2}$

b) $\begin{bmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \end{bmatrix}_{2 \times 3} + \begin{bmatrix} 2 & 0 & -3 \\ 7 & 8 & -1 \end{bmatrix}_{2 \times 3} = \begin{bmatrix} 2 & 0 & -3 \\ 7 & 8 & -1 \end{bmatrix}_{2 \times 3} + \begin{bmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \end{bmatrix}_{2 \times 3} = \begin{bmatrix} 3 & 2 & 0 \\ 11 & 3 & 5 \end{bmatrix}_{2 \times 3}$

Diferencia

La diferencia o resta de matrices $C = A - B$ se define como $c_{ij} = a_{ij} - b_{ij}$. Esto es, la diferencia de matrices es igual a la resta de los elementos correspondientes de ambas matrices que tienen el mismo orden.

Ejemplo.

$C = \begin{bmatrix} 7 & -9 \\ 5 & 8 \\ -3 & -1 \end{bmatrix}_{3 \times 2}$; $D = \begin{bmatrix} 0 & 5 \\ -3 & 2 \\ -1 & 4 \end{bmatrix}_{3 \times 2}$

$C - D = \begin{bmatrix} 7 & -14 \\ 8 & 6 \\ -2 & -5 \end{bmatrix}_{3 \times 2}$
Multiplicación de una matriz por un escalar

El producto de una matriz \(A \) por un escalar \(k \) se define como: \(k \cdot A = k \cdot a_{ij} \), esto es, se multiplica cada uno de los elementos de la matriz por el escalar.

Ejemplo.
\[
C = \begin{bmatrix}
2 & 4 & -6 & 10 & 7 \\
-5 & 8 & 0 & -9 & -1
\end{bmatrix}_{2 \times 5}; \quad k = -3; \quad k \cdot C = \begin{bmatrix}
-6 & -12 & 18 & -30 & -21 \\
15 & -24 & 0 & 27 & 3
\end{bmatrix}_{2 \times 5}
\]

Multiplicación de matrices

Para efectuar el producto de dos matrices se requiere que el número de columnas de la primera matriz sea igual que el número de renglones de la segunda. Cuando sucede esto se dice que las matrices son conformables para la multiplicación. Esto es, si \(A \) es de orden \(p \times n \) y \(B \) es de orden \(n \times q \) el orden de la matriz producto es \(p \times q \).

Los elementos de la matriz producto \(A \cdot B \) se definen de la siguiente manera:

\[
c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}
\]

donde \(i \) va desde 1 hasta \(p \) y \(j \) va desde 1 hasta \(q \).

El elemento que ocupa la posición \((i, j)\) de la matriz \(C \) de \(p \) filas y \(q \) columnas, se obtiene sumando los productos de los elementos de la fila \(i \) de \(A \) por los elementos de la columna \(j \) de \(B \).

Ejemplos.
1) \(A = \begin{bmatrix}
1 & -5 \\
6 & 4
\end{bmatrix}_{2 \times 2} \); \(B = \begin{bmatrix}
4 & -1 \\
-10 & 2
\end{bmatrix}_{2 \times 2} \)
\[
A \cdot B = \begin{bmatrix}
(1)(4) + (-5)(-10) & (1)(-1) + (-5)(2) \\
6(4) + 4(-10) & 6(-1) + 4(2)
\end{bmatrix}_{2 \times 2} = \begin{bmatrix}
4 + 50 & -1 - 10 \\
24 - 40 & -6 + 8
\end{bmatrix}_{2 \times 2} = \begin{bmatrix}
54 & -11 \\
-16 & 2
\end{bmatrix}_{2 \times 2}
\]

2) \(A = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{bmatrix}_{3 \times 2} \); \(B = \begin{bmatrix}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34}
\end{bmatrix}_{3 \times 4} \)
\[
A \cdot B = \begin{bmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} & a_{11}b_{14} + a_{12}b_{24} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} & a_{21}b_{14} + a_{22}b_{24} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} & a_{31}b_{14} + a_{32}b_{24}
\end{bmatrix}_{3 \times 4}
\]

3) \(A = \begin{bmatrix}
5 & 1 \\
1 & 2 \\
3 & 4 \\
-1 & 6
\end{bmatrix}_{4 \times 2} \); \(B = \begin{bmatrix}
1 & -2 & 1 \\
3 & 0 & 5
\end{bmatrix}_{2 \times 3} \)
\[A \cdot B = \begin{bmatrix} 5+0 & -10+0 & 5+0 \\ 1-6 & -2-0 & 1-10 \\ 3+12 & -6+0 & 3+20 \\ -1+18 & 2+0 & -1+30 \end{bmatrix} = \begin{bmatrix} 5 & -10 & 5 \\ -5 & -2 & -9 \\ 15 & -6 & 23 \\ 17 & 2 & 29 \end{bmatrix} \]

4) \(A = [4 \ -5i]_{2\times 2} \); \(B = \begin{bmatrix} 10i & 1 \\ -1 & 0 \end{bmatrix} \)
\[
A \cdot B = \begin{bmatrix} 40i + 5i & 4 - 0i \\ 8i - 15i^2 \end{bmatrix} = \begin{bmatrix} 45i & 4 \end{bmatrix}
\]

5) \(A = \begin{bmatrix} 3 & -1 & 9 & 4 \\ 0 & 5 & -2 & 6 \end{bmatrix} _{2\times 4} \); \(B = [1 \ 7 \ 9]_{3\times 3} \)

No son conformables para el producto.

En general, el producto de matrices no es conmutativo: \(A \cdot B \neq B \cdot A \)

Ejemplo.
\[A = \begin{bmatrix} 1 & 5 & -1 \\ 3 & 2 & 0 \\ 10 & 4 & -2 \end{bmatrix} _{3\times 3} \); \(B = \begin{bmatrix} 2 & 4 & 1 \\ 5 & -1 & -2 \\ 3 & 0 & 7 \end{bmatrix} _{3\times 3} \)
\[
A \cdot B = \begin{bmatrix} 1 & 5 & -1 \\ 3 & 2 & 0 \\ 10 & 4 & -2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 1 \\ 5 & -1 & -2 \\ 3 & 0 & 7 \end{bmatrix} = \begin{bmatrix} 1(2) + 5(5) + (-1)(3) & 1(4) + 5(-1) + (-1)(0) & 1(1) + 5(-2) + (-1)(7) \\ 3(2) + 2(5) + 0(3) & 3(4) + 2(-1) + 0(0) & 3(1) + 2(-2) + 0(7) \\ 10(2) + 4(5) + (-2)(3) & 10(4) + 4(-1) + (-2)(0) & 10(1) + 4(-2) + (-2)(7) \end{bmatrix} = \begin{bmatrix} 16 & -1 & -16 \\ 34 & 10 & -1 \\ 2 & 4 & 1 \end{bmatrix} \]

\[B \cdot A = \begin{bmatrix} 5 & -1 & -2 \\ 3 & 2 & 0 \\ 3 & 0 & 7 \end{bmatrix} \begin{bmatrix} 2 & 4 & 1 \\ 5 & -1 & -2 \\ 10 & 4 & -2 \end{bmatrix} = \begin{bmatrix} 2(1) + 4(3) + 1(10) & 2(5) + 4(2) + 1(4) & 2(-1) + 4(0) + 1(-2) \\ 5(1) + (-1)(3) + (-2)(10) & 5(5) + (-1)(2) + (-2)(4) & 5(-1) + (-1)(0) + (-2)(-2) \\ 3(1) + 0(3) + 7(10) & 3(5) + 0(2) + 7(4) & 3(-1) + 0(0) + 7(-2) \end{bmatrix} = \begin{bmatrix} 24 & 22 & -4 \\ -18 & 15 & -1 \\ 73 & 43 & -17 \end{bmatrix} \]
$A \cdot B \neq B \cdot A$

El producto definido de matrices acepta las siguientes propiedades:

Propiedad asociativa: $A \cdot (B \cdot C) = (A \cdot B) \cdot C$

Propiedad distributiva de la multiplicación respecto a la suma: $C \cdot (A + B) = C \cdot A + C \cdot B$

V.3 MATRICES ESPECIALES

1. **Matriz cero (matriz nula)**

Es aquella matriz, la cual puede ser de cualquier orden, en la que todos sus elementos valen cero.

$$0 = \begin{bmatrix} 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 0 \end{bmatrix}_{m\times n}$$

sus propiedades son:

$0 \cdot A = 0$

$0 + A = A$

Ejemplo.

Sean: $A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}_{2\times 2}$; $0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{2\times 2}$

$0 \cdot A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 0 + 3 & 0 + (1) \\ 0 + 5 & 0 + 2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$

2. **Matriz identidad (matriz unitaria)**

Es una matriz cuadrada de orden n tal que todos los elementos de su diagonal principal son uno y los elementos fuera de ella son cero.

$$I = \begin{bmatrix} 1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \end{bmatrix}_{n\times n}$$

La propiedad principal de una matriz cuadrada es que:

$I \cdot A = A \cdot I = A$

Ejemplo.
Sean: \(A = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \); \(I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)

\[
A \cdot I = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4(1) + (-2)(0) & 4(0) + (-2)(1) \\ -3(1) + 1(0) & -3(0) + 1(1) \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}
\]

\[
I \cdot A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 1(4) + 0(-3) & 1(-2) + 0(1) \\ 0(4) + 1(-3) & 0(-2) + 1(1) \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}
\]

3. **Matriz diagonal**

Es una matriz **cuadrada** de orden \(n \) tal que todos los elementos fuera de su diagonal principal son cero.

\[
D = \begin{bmatrix}
d_{11} & 0 & 0 & \cdots & 0 \\
0 & d_{22} & 0 & \cdots & 0 \\
0 & 0 & d_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & d_{nn}
\end{bmatrix}
\]

Ejemplo.

\[
D = \begin{bmatrix} 12 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & -7 \end{bmatrix}
\]

4. **Matriz triangular superior**

Es una matriz cuadrada de orden \(n \) en la cual todos los elementos debajo de la diagonal principal son cero.

\[
u_{ij} = 0 \text{ para } i > j
\]

\[
U = \begin{bmatrix}
u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\
0 & u_{22} & u_{23} & \cdots & u_{2n} \\
0 & 0 & u_{33} & \cdots & u_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & u_{nn}
\end{bmatrix}
\]

Ejemplo.

\[
U = \begin{bmatrix} 7i & 8i & 5i & -13i \\
0 & -4i & 3i & 6i \\
0 & 0 & 2i & -i \\
0 & 0 & 0 & -9i \end{bmatrix}
\]
5. **Matriz triangular inferior**

Es una matriz *cuadrada* de orden *n* en la cual todos los elementos por arriba de la diagonal principal son cero.

\[l_{ij} = 0 \text{ para } i < j \]

\[
L = \begin{bmatrix}
 l_{11} & 0 & 0 & \cdots & 0 \\
 l_{21} & l_{22} & 0 & \cdots & 0 \\
 l_{31} & l_{32} & l_{33} & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 l_{n1} & l_{n2} & l_{n3} & \cdots & l_{nn}
\end{bmatrix}_{n \times n}
\]

Ejemplo.

\[
L = \begin{bmatrix}
 6 & 0 \\
 -9 & -17
\end{bmatrix}
\]

6. **Matriz simétrica**

Se dice que una matriz *cuadrada* es simétrica si es igual a su propia transpuesta: \(A = A^T \)

\[a_{ij} = a_{ji} \text{ para toda } i \text{ y para toda } j \]

Ejemplo.

\[
A = \begin{bmatrix}
 3 & 2 & 2 & -8 \\
 2 & 4 & 5 & 0 \\
 2 & 5 & -7 & 4 \\
 -8 & 0 & 4 & 6
\end{bmatrix} = A^T
\]

7. **Matriz antisimétrica**

Se dice que una matriz *cuadrada* es antisimétrica si es igual al negativo de su propia transpuesta: \(A = -A^T \)

\[a_{ij} = -a_{ji} \text{ para toda } i \text{ y para toda } j \]

Ejemplo.

\[
A = \begin{bmatrix}
 0 & -2 & 3 \\
 2 & 0 & 4 \\
 -3 & -4 & 0
\end{bmatrix} \Rightarrow A^T = \begin{bmatrix}
 0 & 2 & -3 \\
 -2 & 0 & -4 \\
 3 & 4 & 0
\end{bmatrix} \Rightarrow -A^T = \begin{bmatrix}
 0 & -2 & 3 \\
 2 & 0 & 4 \\
 -3 & -4 & 0
\end{bmatrix} = A
\]

8. **Matriz conjugada**

Sea \(A \) una matriz de números complejos. Si se reemplaza cada elemento por su complejo conjugado se obtiene \(\overline{A} \) que es su matriz *conjugada*.
Ejemplo.

\[
A = \begin{bmatrix}
5 - 2i & 8i & -3 + 6i & 1 - i \\
8i & 6 + 7i & 14 - 11i & 9 \\
10i & 16 - 5i & -13 + 17i & 6
\end{bmatrix}
\]

\[
\bar{A} = \begin{bmatrix}
5 + 2i & -8i & -3 - 6i & 1 + i \\
8 + 4i & 6 - 7i & 14 + 11i & 9 \\
-10i & 16 + 5i & -13 - 17i & 6
\end{bmatrix}
\]

9. **Matriz hermitiana**

Se dice que una matriz de números complejos cuadrada es hermitiana, denotada como A^*, si es igual a su propia transpuesta conjugada: $A = \bar{A}^T = A^*$

$a_{ij} = \bar{a}_{ji}$ para toda i y para toda j

Ejemplo.

\[
A = \begin{bmatrix}
5 & 2 - 6i \\
2 + 6i & 4
\end{bmatrix}
\]

\[
\bar{A} = \begin{bmatrix}
5 & 2 + 6i \\
2 - 6i & 4
\end{bmatrix}
\]

\[
\bar{A}^T = A^* = \begin{bmatrix}
5 & 2 - 6i \\
2 + 6i & 4
\end{bmatrix} = A
\]

10. **Matriz antihermitiana**

Se dice que una matriz de números complejos cuadrada es antihermitiana si es igual al negativo de su propia transpuesta conjugada: $A = -\bar{A}^T = -A^*$

$a_{ij} = -\bar{a}_{ji}$ para toda i y para toda j

Ejemplo.

\[
A = \begin{bmatrix}
11i & -9 \\
9 & -6i
\end{bmatrix}
\]

\[
\bar{A} = \begin{bmatrix}
-11i & -9 \\
9 & 6i
\end{bmatrix}
\]

\[
\bar{A}^T = A^* = \begin{bmatrix}
-11i & 9 \\
-9 & 6i
\end{bmatrix} = -A
\]

1 Las matrices simétricas son un caso especial de las hermitianas y las matrices antisimétricas son un caso especial de las antihermitianas. Por lo tanto, toda matriz simétrica es hermitiana, pero una matriz hermitiana no necesariamente es simétrica. De la misma forma, toda matriz antisimétrica es antihermitiana, pero una matriz antihermitiana no necesariamente es antisimétrica.
\[-A^* = \begin{bmatrix} 11i & -9 \\ 9 & 6i \end{bmatrix} = A\]

V.4 DETERMINANTES

V.4.1 DEFINICIÓN

Sea \(A\) una matriz cuadrada de orden \(n\). Se define como determinante de \(A\) (denotado como \(|A|\), \(\det(A)\) ó \(\Delta_A\)) a la suma de los \(n\) productos (signados) formados por \(n\)-factores que se obtienen al multiplicar \(n\)-elementos de la matriz de tal forma que cada producto contenga un solo elemento de cada fila y columna de \(A\).

Esto significa que un determinante es un valor numérico \(\kappa\) que está relacionado con una matriz cuadrada y que sigue ciertas reglas para su cálculo.

\[
\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix} = \kappa
\]

Dos matrices diferentes (tanto en orden como en elementos) pueden tener igual determinante. Nótese como la notación de determinante no presenta los corchetes (a diferencia de las matrices) sino sólo líneas.

V.4.2 CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS

Para calcular determinantes de segundo y tercer grado el método más simple es el de multiplicación diagonal, mejor conocido como Regla de Sarrus.

Esta regla establece que para una matriz de segundo orden \(A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\), su determinante se calcula de la siguiente manera:

\[
\det(A) = a_{11}a_{22} - a_{21}a_{12} = a_{11}a_{22} - a_{12}a_{21}
\]

esto significa que el determinante de segundo orden es el producto de los elementos de la diagonal principal menos el producto de los elementos de la diagonal secundaria.

Ejemplos.

1) \[
\begin{vmatrix} 3 & 5 \\ 2 & 4 \end{vmatrix} = 3(4) - 2(5) = 12 - 10 = 2
\]
2) \[
\begin{vmatrix}
4 & -8 \\
3 & -7 \\
\end{vmatrix}
= 4(-7) - 3(-8) = -28 + 24 = -4
\]

3) \[
\begin{vmatrix}
-12 & -6 \\
5 & -4 \\
\end{vmatrix}
= -12(-4) - 5(-6) = 48 + 30 = 78
\]

La regla de Sarrus aplicada a una matriz de tercer orden \(A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \), establece que su determinante se calcula como:

\[
\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}
\]

esto significa que el determinante de segundo orden es la suma de los productos de los elementos de la diagonal principal y sus dos paralelas, menos la suma de los productos de los elementos de la diagonal secundaria y sus dos paralelas.

Ejemplos.

1) \[
\begin{vmatrix}
1 & -3 & 5 \\
7 & 4 & -1 \\
-2 & 0 & 6 \\
\end{vmatrix}
= 1(4)(6) + 7(0)(5) + (-2)(-3)(-1) - (-2)(4)(5) - (7)(-3)(6) - 1(0)(-1)
= 24 + 0 - 6 + 40 + 126 + 0 = 184
\]

2) \[
\begin{vmatrix}
2 & -1 & 0 \\
3 & 5 & 10 \\
1 & 7 & -8 \\
\end{vmatrix}
= 2(5)(-8) + 3(7)(0) + 1(-1)(10) - 1(5)(0) - 3(-1)(-8) - 2(7)(10)
= -80 + 0 - 10 - 0 - 24 - 140 = -254
\]

3) \[
\begin{vmatrix}
3 & -5 & 8 \\
-4 & 2 & 3 \\
7 & 9 & -1 \\
\end{vmatrix}
= 3(2)(-1) + (-4)(9)(8) + 7(-5)(3) - 7(2)(8) - (-4)(-5)(-1) - 3(9)(3)
= -6 - 288 - 105 - 112 + 20 - 81 = -572
\]

V.4.3 PROPIEDADES DE LOS DETERMINANTES

1. Si todos los elementos de una columna o de un renglón son cero, entonces el determinante es cero.

Ejemplos.

1) \[
\begin{vmatrix}
2 & 0 \\
6 & 0 \\
\end{vmatrix}
= 2(0) - 6(0) = 0 - 0 = 0
\]
2) \[
\begin{vmatrix}
-9 & 1 \\
0 & 0
\end{vmatrix}
= (-9)(0) - 0(1) = 0 - 0 = 0
\]

2. El determinante de la matriz \(A \) es igual al determinante de la matriz \(A^T \).

Ejemplo.
\[
A = \begin{bmatrix}
5 & -1 \\
8 & 3
\end{bmatrix}
\]
\[
\det(A) = \begin{vmatrix}
5 & -1 \\
8 & 3
\end{vmatrix} = 5(3) - (-1)(8) = 15 + 8 = 23
\]
\[
A^T = \begin{bmatrix}
5 & 8 \\
-1 & 3
\end{bmatrix}
\]
\[
\det(A^T) = \begin{vmatrix}
5 & 8 \\
-1 & 3
\end{vmatrix} = 5(3) - (-1)(8) = 15 + 8 = 23
\]

3. Si cada elemento de un renglón o una columna es multiplicado por un escalar \(k \), el determinante es también multiplicado por \(k \).

Ejemplos.
\[
\begin{vmatrix}
2 & 3 \\
4 & 5
\end{vmatrix} = 2(5) - 4(3) = 10 - 12 = -2
\]

Multiplicando el primer renglón por \(k = 3 \)
\[
\begin{vmatrix}
6 & 9 \\
4 & 5
\end{vmatrix} = 6(5) - (4)(9) = 30 - 36 = -6
\]

Multiplicando la primera columna por \(k = 3 \)
\[
\begin{vmatrix}
6 & 3 \\
12 & 5
\end{vmatrix} = 6(5) - 12(3) = 30 - 36 = -6
\]

en general:
\[
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix} = \begin{vmatrix}
ka_{11} & ka_{12} & \cdots & ka_{1n} \\
ka_{21} & ka_{22} & \cdots & ka_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
ka_{n1} & ka_{n2} & \cdots & ka_{nn}
\end{vmatrix}
\]

4. Si se intercambian dos renglones o (columnas) el signo del determinante cambia.

Ejemplos.
\[
\begin{vmatrix}
4 & 5 \\
1 & 2
\end{vmatrix} = 4(2) - 1(5) = 8 - 5 = 3
\]

Intercambiando renglones:
1 2
4 5
\[\begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = 1(5) - 4(2) = 5 - 8 = -3 \]

Intercambiando columnas:

\[\begin{vmatrix} 5 & 4 \\ 2 & 1 \end{vmatrix} = 5(1) - 2(4) = 5 - 8 = -3 \]

5. Si un renglón (o columna) se traslada \(p \) renglones (o columnas) entonces el determinante obtenido es igual a: \((-1)^p \Delta\)

Ejemplo.

\[
\begin{vmatrix} 4 & 2 & 3 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \end{vmatrix} = 4(0)(-2) + 1(-1)(3) + 0(2)(-1) - (0)(0)(3) - 1(2)(-2) - 4(-1)(-1) \\
= 0 - 3 + 0 - 0 + 4 - 4 = -3
\]

Si se mueve la primera columna, dos posiciones, entonces:

\[
\begin{vmatrix} 2 & 3 & 4 \\ 0 & -1 & 1 \\ -1 & -2 & 0 \end{vmatrix} = 2(-1)(0) + (0)(-2)(4) + (-1)(3)(1) - (-1)(-1)(4) - (0)(3)(0) - 2(-2)(1) \\
= 0 - 0 - 3 - 4 + 0 + 4 = -3 = (-1)^2 \Delta
\]

Si se mueve el primer renglón, una posición, se tiene:

\[
\begin{vmatrix} 1 & 0 & -1 \\ 4 & 2 & 3 \\ 0 & -1 & -2 \end{vmatrix} = 1(2)(-2) + 4(-1)(-1) + 0(0)(3) - (0)(2)(-1) - 4(0)(-2) - 1(-1)(3) \\
= -4 + 4 + 0 + 0 + 3 = 3 = (-1)^1 \Delta
\]

6. Si dos renglones o dos columnas son iguales, entonces el determinante es cero.

Ejemplos.

1) \[
\begin{vmatrix} 1 & 1 \\ 6 & 6 \end{vmatrix} = 1(6) - 6(1) = 6 - 6 = 0
\]

2) \[
\begin{vmatrix} -2 & 5 \\ -2 & 5 \end{vmatrix} = (-2)(5) - (-2)(5) = -10 + 10 = 0
\]

7. Un determinante no cambia de valor si a todos los elementos de un renglón (o columna) le son sumados o restados los elementos de otro renglón (o columna) multiplicados por un escalar:

\[
\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} + ka_{1j} & a_{12} & \cdots & a_{1n} \\ a_{21} + ka_{2j} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + ka_{nj} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + k \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}
\]
Ejemplo.

\[
\Delta = \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} = 2(4) - 1(3) = 8 - 3 = 5
\]

sumando a la primera columna la segunda multiplicada por 2:

\[
\Delta_2 = \begin{vmatrix} 2 + 2(3) & 3 \\ 1 + 2(4) & 4 \end{vmatrix} = \begin{vmatrix} 8 & 3 \\ 9 & 4 \end{vmatrix} = 8(4) - 9(3) = 32 - 27 = 5
\]

al segundo renglón de \(\Delta\) se le resta tres veces el primer renglón:

\[
\Delta_2 = \begin{vmatrix} 2 & 3 \\ 1 - (3)(2) & 4 - (3)(3) \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ -5 & -5 \end{vmatrix} = 2(-5) - (-5)(3) = -10 + 15 = 5
\]

Esta propiedad es muy empleada para obtener ceros y así simplificar el cálculo del determinante.

Ejemplo.

\[
\Delta = \begin{vmatrix} 3 & -1 & 1 \\ 4 & 5 & 2 \\ 6 & 0 & 3 \end{vmatrix} = \begin{vmatrix} 3 - 2(1) & -1 & 1 \\ 4 - 2(2) & 5 & 2 \\ 6 - 2(3) & 0 & 3 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 1 \\ 0 & 5 & 2 \\ 0 & 0 & 3 \end{vmatrix} = 15
\]

V.4.4 MENOR DE UN ELEMENTO

Sea un determinante de orden \(n\), correspondiente a una matriz \(A\):

\[
\det(A) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}
\]

Se define el menor de un elemento \(a_{ij}\) al determinante que resulta de eliminar el renglón \(i\) y la columna \(j\). Si se denota como \(M_{ij}\) a tal determinante, se tiene:

\[
M_{ij} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix}
\]

Ejemplos.

Dado el determinante:

\[
\Delta = \begin{vmatrix} -1 & 5 & -3 \\ 2 & 1 & 4 \\ 10 & 6 & -2 \end{vmatrix}
\]
Algunos menores son:

\[
M_{22} = \begin{vmatrix}
-1 & 2 \\
10 & -2
\end{vmatrix} = \begin{vmatrix}
-1 & -3 \\
10 & -2
\end{vmatrix} = 2 + 30 = 32
\]

\[
M_{31} = \begin{vmatrix}
1 & 5 \\
1 & 4
\end{vmatrix} = \begin{vmatrix}
5 & -3 \\
1 & 4
\end{vmatrix} = 20 + 3 = 23
\]

\[
M_{23} = \begin{vmatrix}
1 & 5 \\
10 & -2
\end{vmatrix} = \begin{vmatrix}
1 & 5 \\
10 & 6
\end{vmatrix} = -6 - 50 = -56
\]

Ejemplo.
Dado el determinante:
\[
\begin{vmatrix}
6 & 1 & 3 & 2 \\
9 & 0 & 2 & 10 \\
8 & 7 & 5 & 4 \\
2 & -3 & 1 & 6
\end{vmatrix}
\]

Encontrar el menor \(M_{43} \)

Solución:
\[
M_{43} = \begin{vmatrix}
5 & 1 & 2 \\
9 & 0 & 10 \\
8 & 7 & 4
\end{vmatrix} = \begin{vmatrix}
5 & 1 \\
9 & 10 \\
8 & 4
\end{vmatrix} = 0 + 126 + 80 - 0 - 36 - 350 = -180
\]

V.4.5 COFACTOR DE UN ELEMENTO

Se define el cofactor de un elemento \(a_{ij} \), el cual se denota \(A_{ij} \), como:

\[
A_{ij} = (-1)^{i+j} M_{ij}
\]

es decir, el cofactor es igual al menor multiplicado por 1 ó \(-1\), dependiendo si la suma de los dos subíndices es par o impar, respectivamente.

Ejemplo.
Calcular los cofactores del siguiente determinante:
\[
\det (A) = \begin{vmatrix}
4 & 11 \\
-5 & -8
\end{vmatrix}
\]

Solución:
\[
A_{11} = -8 \\
A_{12} = 5
\]
$$A_{21} = -11$$
$$A_{22} = 4$$

Ejemplo.
Calcular los cofactores de los elementos correspondientes al primer renglón del siguiente determinante:

$$\det(A) = \begin{vmatrix} 1 & 0 & 1 \\ -2 & 5 & 4 \\ 3 & 10 & 2 \end{vmatrix}$$

Solución.
$$A_{11} = \begin{vmatrix} 5 & 4 \\ 10 & 2 \end{vmatrix} = 10 - 40 = -30$$
$$A_{12} = \begin{vmatrix} -2 & 4 \\ 3 & 2 \end{vmatrix} = -(-4 - 12) = 16$$
$$A_{13} = \begin{vmatrix} -2 & 5 \\ 3 & 10 \end{vmatrix} = -20 - 15 = -35$$

El determinante de una matriz A de cualquier orden puede obtenerse mediante la suma de los productos de los elementos de cualquier renglón o columna por sus respectivos cofactores:

$$\det(A) = \sum_{j=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} a_{il} A_{il}$$

Para el renglón k o la columna l.

Así, para un determinante de tercer orden, se tiene:

$$\det(A) = a_{11} a_{22} a_{33} - a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32}$$

esto significa que se elige el primer renglón y se suman los elementos por sus respectivos cofactores.

Este procedimiento también puede aplicarse a columnas, por ejemplo, para el caso anterior:

$$\det(A) = a_{13} a_{22} a_{31} - a_{12} a_{23} a_{31} + a_{11} a_{23} a_{32}$$

esto significa que se elige la tercera columna y se suman los elementos por sus respectivos cofactores.

Ejemplo.
Calcular el siguiente determinante aplicando cofactores:
det \(A = \begin{vmatrix} 1 & 2 & -8 \\ 6 & -4 & 5 \\ 2 & -1 & 3 \end{vmatrix} \)

Tomando el primer renglón se tiene:
\[
= \begin{vmatrix} -4 & 5 \\ -1 & 3 \\ -2 & 3 \end{vmatrix} + (-8) \begin{vmatrix} 6 & 5 \\ 2 & 3 \end{vmatrix} = I(-12 + 5) - 2(18 - 10) + (-8)(-6 + 8) \\
= I(-7) - 2(8) + (-8)(2) = -7 - 16 = -39
\]

Ahora, tomando la segunda columna se tiene:
\[
= \begin{vmatrix} 6 & 5 \\ 2 & 3 \\ -2 & 3 \end{vmatrix} + (-4) \begin{vmatrix} 1 & -8 \\ 2 & 3 \end{vmatrix} = -2(18 - 10) + (-4)(3 + 16) - (-1)(5 + 8) \\
= -2(8) - 4(19) + 1(53) = 16 - 76 + 53 = -39
\]

Cuando aparecen varios ceros en un renglón o en una columna, a fin de simplificar el cálculo de un determinante, es conveniente utilizar ese renglón o columna.

Ejemplo.
\[
\text{det} \begin{vmatrix} 1 & 2 & -1 & 4 \\ 0 & 2 & 1 & -2 \\ 0 & 3 & 2 & 5 \\ 0 & 4 & -1 & 3 \end{vmatrix} = \]
\[
= 1A_{11} + 0A_{21} + 0A_{31} + 0A_{41} = A_{11}
\]

calculando el cofactor \(A_{11} \) y tomando el segundo renglón se tiene:
\[
= \begin{vmatrix} 2 & 5 \\ -1 & 3 \\ -2 & 3 \end{vmatrix} + (-2) \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} = 2(6 + 5) - 1(9 - 20) + (-2)(-3 - 8)
\]
\[
= 2(11) - 1(-11) + (-2)(-11) = 22 + 11 + 22 = 55
\]

V.4.6 MATRIZ ADJUNTA

Si \(A = a_{ij} \) es una matriz cuadrada y \(A_{ij} \) es el cofactor de \(a_{ij} \), se define la matriz adjunta de \(A \), denotada \(Adj \ A \), como la matriz de cofactores de su transpuesta.

\[
Adj \ A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}
\]

Esto significa que para encontrar la matriz adjunta primero se transpone la matriz y después, con base en ella, se calcula la matriz de cofactores.

Ejemplo.
Obtener la matriz adjunta de:
La matriz transpuesta es:

$$A^T = \begin{bmatrix} 3 & -1 \\ 7 & 8 \end{bmatrix}$$

La matriz de cofactores de la matriz transpuesta es:

$$Adj A = \begin{bmatrix} 8 & -7 \\ 1 & 3 \end{bmatrix}$$

Ejemplo.
Encontrar la matriz adjunta de:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

Solución.

$$A^T = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 3 \\ 3 & 2 & 4 \end{bmatrix}$$

$$Adj A = \begin{bmatrix} 3 & 3 & -2 & 3 & 2 & 3 \\ 2 & 4 & -3 & 4 & 3 & 2 \\ -2 & 3 & 1 & 3 & -1 & 2 \\ 2 & 4 & 3 & 4 & -3 & 2 \\ 2 & 3 & -1 & 3 & 1 & 2 \\ 3 & 3 & -2 & 3 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 6 & 1 & -5 \\ -2 & -5 & 4 \\ -3 & 3 & -1 \end{bmatrix}$$

V.5 MATRIZ INVERSA

V.5.1 MATRIZ INVERSA POR EL MÉTODO DE LA ADJUNTA

En el álgebra matricial, la división no está definida. La inversión de matrices es la contraparte de la división en álgebra.

La inversa de una matriz está definida como aquella matriz, que multiplicada por la original da por resultado la matriz identidad, se denota como A^{-1}:

$$A^{-1} \cdot A = A \cdot A^{-1} = I$$

esto se cumple siempre y cuando $\det(A) \neq 0$.

La matriz inversa se obtiene en su forma clásica, de la siguiente manera:
El procedimiento para obtener la matriz inversa de una matriz A por el método de la adjunta es el siguiente:

- Se calcula el determinante de A. Si $\det(A) \neq 0$ entonces tiene matriz inversa (en caso contrario se dice que es una matriz singular).
- Se obtiene la transpuesta de A, es decir, A^T.
- Se calcula la matriz de cofactores de A^T, dando lugar a la matriz adjunta de A, esto es, $\text{Adj} A$.
- Se forma el producto $\frac{1}{\det(A)} \cdot \text{Adj} A$.

Ejemplo.

Obtener la matriz inversa de:

$$A = \begin{bmatrix} -2 & -1 \\ 3 & 4 \end{bmatrix}$$

Solución.

$$\det(A) = \begin{vmatrix} -2 & -1 \\ 3 & 4 \end{vmatrix} = -8 - (-3) = -5$$

$$A^T = \begin{bmatrix} -2 & 3 \\ -1 & 4 \end{bmatrix}$$

$$\text{Adj} A = \begin{bmatrix} 4 & 1 \\ -3 & -2 \end{bmatrix}$$

$$A^{-1} = \frac{1}{-5} \cdot \text{Adj} A = \frac{1}{-5} \begin{bmatrix} 4 & 1 \\ -3 & -2 \end{bmatrix} = \begin{bmatrix} -\frac{4}{5} & -\frac{1}{5} \\ \frac{3}{5} & \frac{2}{5} \end{bmatrix}$$

Comprobación:

$$A \cdot A^{-1} = \begin{bmatrix} -2 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -\frac{4}{5} & -\frac{1}{5} \\ \frac{3}{5} & \frac{2}{5} \end{bmatrix} = \begin{bmatrix} \frac{8}{5} & \frac{3}{5} \\ \frac{12}{5} & \frac{8}{5} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Ejemplo.

Obtener la matriz inversa de:
\[A = \begin{bmatrix} 2 & -1 & 0 \\ -5 & 1 & 2 \\ 4 & -3 & 6 \end{bmatrix} \]

Solución.
\[
\det(A) = 12 + 0 - 8 - 0 - 30 + 12 = -14
\]
\[
A^T = \begin{bmatrix} 2 & -5 & 4 \\ -1 & 1 & -3 \\ 0 & 2 & 6 \end{bmatrix}
\]
\[
\text{Adj} \ A = \begin{bmatrix} 1 & -3 & -1 \\ -6 & 0 & 0 \\ 2 & 6 & 0 \\ -5 & 2 & -2 \\ 1 & -3 & -1 \\ -1 & 3 & -1 \\ 6 & 0 & 0 \\ 4 & 2 & 2 \\ 2 & -3 & -1 \end{bmatrix}
\]
\[
A^{-1} = \frac{1}{-14} \cdot \text{Adj} \ A = \frac{1}{-14} \begin{bmatrix} 12 & 6 & -2 \\ 38 & 12 & -4 \\ 11 & 2 & -3 \end{bmatrix}
\]

Comprobación:
\[
A \cdot A^{-1} = \begin{bmatrix} 2 & -1 & 0 \\ -5 & 1 & 2 \\ 4 & -3 & 6 \end{bmatrix} \begin{bmatrix}
\frac{-24}{14} + \frac{38}{14} + 0 \\ \frac{-12}{14} + \frac{12}{14} + 0 \\ \frac{4}{14} - \frac{4}{14} + 0 \\
\frac{-60}{14} + \frac{38}{14} + 0 \\ \frac{-22}{14} + \frac{20}{14} - \frac{12}{14} + 0 \\ \frac{-14}{14} - \frac{4}{14} + 0 \\
\frac{-48}{14} + \frac{114}{14} + 0 \\ \frac{-24}{14} + \frac{36}{14} - \frac{12}{14} + 0 \\ \frac{-8}{14} - \frac{12}{14} + 18 \\
\frac{-48}{14} + \frac{114}{14} + 0 \\ \frac{-24}{14} + \frac{36}{14} - \frac{12}{14} + 0 \\ \frac{-8}{14} - \frac{12}{14} + 18 \end{bmatrix}
\]
\[
= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I
\]

La inversa de una matriz diagonal se obtiene invirtiendo sus términos, esto es, si:
La inversa de un producto de matrices se obtiene de la siguiente regla:

\[(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}\]

V.5.2 MATRIZ INVERSA POR TRANSFORMACIONES ELEMENTALES

El método se basa en agregar a la matriz original una matriz identidad del mismo orden. El objetivo de este método es producir ceros y unos en el lado de la matriz original, los unos deben estar alojados en la diagonal principal, y los ceros fuera de la diagonal principal, cuando se termine el proceso, la matriz que resulta del lado donde se añadió la matriz unitaria, será la matriz inversa.

Ejemplo.
Obtener la matriz inversa de:

\[
A = \begin{bmatrix}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn}
\end{bmatrix}_{nn} \Rightarrow \begin{bmatrix}
\frac{1}{a_{11}} & 0 & \cdots & 0 \\
0 & \frac{1}{a_{22}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{a_{nn}}
\end{bmatrix}
\]

La inversa de un producto de matrices se obtiene de la siguiente regla:
multiplicando por \(\frac{2}{3} \) el segundo renglón y sumando al primero:

\[
A = \begin{bmatrix}
1 & 0 & \frac{2}{3} \\
0 & 1 & \frac{1}{2}
\end{bmatrix}
\]

por lo tanto:

\[
A^{-1} = \begin{bmatrix}
\frac{2}{3} & 1 \\
\frac{5}{2} & \frac{3}{2}
\end{bmatrix}
\]

Comprobación:

\[
A \cdot A^{-1} = \begin{bmatrix}
3 & -2 \\
-5 & 4
\end{bmatrix} \begin{bmatrix}
\frac{2}{3} & 1 \\
\frac{5}{2} & \frac{3}{2}
\end{bmatrix} = \begin{bmatrix}
6 - 5 & 3 - 3 \\
-10 + 10 & -5 + 6
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} = I
\]

Ejemplo.

Obtener la matriz inversa de:

\[
A = \begin{bmatrix}
7 & 9 & -6 \\
3 & 2 & 5 \\
15 & 10 & 8
\end{bmatrix}
\]

Solución.

Se agrega una matriz unitaria de tercer orden:

\[
A = \begin{bmatrix}
7 & 9 & -6 & 1 & 0 & 0 \\
3 & 2 & 5 & 0 & 1 & 0 \\
15 & 10 & 8 & 0 & 0 & 1
\end{bmatrix}
\]

dividiendo entre 7 el primer renglón:

\[
A = \begin{bmatrix}
1 & \frac{9}{7} & -\frac{6}{7} & 1 \\
3 & 2 & 5 & 0 & 1 & 0 \\
15 & 10 & 8 & 0 & 0 & 1
\end{bmatrix}
\]

multiplicando por \(-\frac{3}{7}\) el primer renglón y sumando al segundo:

\[
A = \begin{bmatrix}
1 & \frac{9}{7} & -\frac{6}{7} & \frac{1}{7} & 0 & 0 \\
0 & -\frac{13}{7} & \frac{53}{7} & -\frac{3}{7} & 1 & 0 \\
15 & 10 & 8 & 0 & 0 & 1
\end{bmatrix}
\]

multiplicando por \(-15\) el primer renglón y sumando al tercero:
\[
A = \begin{bmatrix}
 1 & 9/7 & -6/7 & 1/7 & 0 & 0 \\
 0 & 13/7 & 53/7 & -3/7 & 1 & 0 \\
 0 & 65/7 & 146/7 & 15/7 & 0 & 1 \\
\end{bmatrix}
\]

dividiendo entre \(-13/7\) el segundo renglón:

\[
A = \begin{bmatrix}
 1 & 9/7 & -6/7 & 1/7 & 0 & 0 \\
 0 & 1 & -53/13 & 3/13 & -7/13 & 0 \\
 0 & -65/7 & 146/7 & 15/7 & 0 & 1 \\
\end{bmatrix}
\]

multiplicando por \(-9/7\) el segundo renglón y sumando al primero:

\[
A = \begin{bmatrix}
 1 & 0 & 399/91 & -14/91 & 63/91 & 0 \\
 0 & 1 & 53/13 & 3/13 & -7/13 & 0 \\
 0 & -65/7 & 146/7 & 15/7 & 0 & 1 \\
\end{bmatrix}
\]

multiplicando por \(65/7\) el segundo renglón y sumando al tercero:

\[
A = \begin{bmatrix}
 1 & 0 & 399/91 & -14/91 & 63/91 & 0 \\
 0 & 1 & -53/13 & 3/13 & 7/13 & 0 \\
 0 & 0 & 17/13 & 0 & 65/13 & 1 \\
\end{bmatrix}
\]

dividiendo entre \(-17\) el tercer renglón:

\[
A = \begin{bmatrix}
 1 & 0 & 399/91 & -14/91 & 63/91 & 0 \\
 0 & 1 & -53/13 & 3/13 & 7/13 & 0 \\
 0 & 0 & 1 & 0 & 5/17 & -1/17 \\
\end{bmatrix}
\]

multiplicando por \(-399/91\) el tercer renglón y sumando al primero:
\[
A = \begin{bmatrix}
1 & 0 & 0 & -14 & 132 & 57 \\
0 & 1 & -\frac{53}{13} & 91 & 221 & 221 \\
0 & 0 & 1 & \frac{13}{3} & \frac{7}{13} & 0 \\
\end{bmatrix}
\]

multiplicando por \(\frac{53}{13}\) el tercer renglón y sumando al segundo:

\[
A = \begin{bmatrix}
1 & 0 & 0 & -14 & 132 & 57 \\
0 & 1 & 0 & \frac{3}{13} & \frac{146}{53} & \frac{53}{13} \\
0 & 0 & 1 & \frac{5}{17} & 1 & \frac{17}{17} \\
\end{bmatrix}
\]

por lo tanto:

\[
A^{-1} = \begin{bmatrix}
-14 & -132 & 57 \\
91 & 221 & 221 \\
3 & 146 & -53 \\
13 & 221 & 221 \\
0 & 5 & 1 \\
17 & -17 \\
\end{bmatrix}
\]

Comprobación:

\[
A \cdot A^{-1} = \begin{bmatrix}
7 & 9 & -6 \\
3 & 2 & 5 \\
15 & 10 & 8 \\
\end{bmatrix} \begin{bmatrix}
-14 & -132 & 57 \\
91 & 221 & 221 \\
3 & 146 & -53 \\
13 & 221 & 221 \\
0 & 5 & 1 \\
17 & -17 \\
\end{bmatrix}
= \begin{bmatrix}
98 & 27 & +0 \\
91 & 13 & +0 \\
42 & 6 & +0 \\
91 & 13 & +0 \\
210 & 30 & +0 \\
91 & 13 & +0 \\
\end{bmatrix} \begin{bmatrix}
-924 & +1314 & +30 \\
221 & 221 & 221 & 221 & 221 & 221 & 221 & 17 \\
396 & +292 & +25 \\
171 & +106 & +5 \\
1980 & +1460 & +40 \\
855 & +530 & +8 \\
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} = I
V.6 SOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

Muchos problemas de la vida real obligan a resolver simultáneamente varias ecuaciones lineales para hallar las soluciones comunes a todas ellas. También resultan muy útiles en geometría (las ecuaciones lineales se interpretan como rectas y planos, y resolver un sistema equivale a estudiar la posición relativa de estas figuras geométricas en el plano o en el espacio).

Un sistema de ecuaciones lineales es un conjunto de ecuaciones lineales que se puede escribir de forma tradicional así:

\[
\begin{align*}
& a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\
& a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\
& \quad \cdots \quad \quad \cdots \\
& a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m
\end{align*}
\]

Un sistema así expresado tiene \(m \) ecuaciones y \(n \) incógnitas, donde \(a_{ij} \) son los coeficientes reales del sistema, los valores \(b_m \) son los términos independientes del sistema y las incógnitas \(x_i \) son las variables del sistema. La solución del sistema es un conjunto ordenado de números reales \(s_1, s_2, \ldots, s_n \) tales que al sustituir en las incógnitas satisfacen a la vez las \(m \) ecuaciones del sistema.

Este mismo sistema de ecuaciones lineales en notación matricial tiene esta forma:

\[
[A] \cdot [x] = [B]
\]

donde:
- \([A]\) es una matriz de coeficientes
- \([B]\) es un vector de constantes
- \([x]\) es un vector de incóGNitas

V.6.1 MÉTODO DE LA MATRIZ INVERSA

Sea la ecuación matricial: \([A] \cdot [x] = [B]\) que denota un sistema de ecuaciones lineales.

Esta ecuación puede ser resuelta para \([x]\), premultiplicando \([A]\) por su inversa, y para no alterar el resultado, también se premultiplica \([B]\) por la inversa de \([A]\):

\[
[A]^{-1} \cdot [A] \cdot [x] = [A]^{-1} \cdot [B], \text{ esto es:}
\]

\[
[x] = [A]^{-1} \cdot [B]
\]
Ejemplos.
Resolver los siguientes sistemas de ecuaciones:

1) \[\begin{aligned}
3x_1 + 4x_2 &= 15 \\
2x_1 + x_2 &= 5 \\
\end{aligned} \]

Solución.
\[
A = \begin{bmatrix}
3 & 4 \\
2 & 1 \\
\end{bmatrix}
\]

\[
\det (A) = \begin{vmatrix}
3 & 4 \\
2 & 1 \\
\end{vmatrix} = 3 - 8 = -5
\]

\[
A^T = \begin{bmatrix}
3 & 2 \\
4 & 1 \\
\end{bmatrix}
\]

\[
\text{Adj } A = \begin{bmatrix}
1 & -4 \\
-2 & 3 \\
\end{bmatrix}
\]

\[
A^{-1} = \frac{1}{-5} \cdot \text{Adj } A = \frac{1}{-5} \begin{bmatrix}
1 & -4 \\
-2 & 3 \\
\end{bmatrix} = \begin{bmatrix}
\frac{-1}{5} & \frac{4}{5} \\
\frac{2}{5} & \frac{-3}{5} \\
\end{bmatrix}
\]

\[
x = [A]^{-1} \cdot [B] = \begin{bmatrix}
\frac{-1}{5} & \frac{4}{5} \\
\frac{2}{5} & \frac{-3}{5} \\
\end{bmatrix} \begin{bmatrix}
15 \\
5 \\
\end{bmatrix} = \begin{bmatrix}
-3 + 4 \\
6 - 3 \\
\end{bmatrix} = \begin{bmatrix}
1 \\
3 \\
\end{bmatrix}
\]

∴ \(x_1 = 1; \ x_2 = 3 \)

\[
x + 4y + 5z = 11 \\
2) \begin{aligned}
3x - 2y + z &= 5 \\
4x + y - 3z &= -26 \\
\end{aligned}
\]

Solución.
\[
A = \begin{bmatrix}
1 & 4 & 5 \\
3 & -2 & 1 \\
4 & 1 & -3 \\
\end{bmatrix}
\]

\[
\det (A) = 6 + 15 + 16 + 40 + 36 - 1 = 112
\]

\[
A^T = \begin{bmatrix}
1 & 3 & 4 \\
4 & -2 & 1 \\
5 & 1 & -3 \\
\end{bmatrix}
\]
V.6.2 MÉTODO DE ELIMINACIÓN DE GAUSS

Dado un sistema de \(m \) ecuaciones con \(n \) incógnitas el método de eliminación de Gauss consiste en obtener un sistema equivalente cuya primera ecuación tenga \(n \) incógnitas, la segunda \(n-1 \), la tercera \(n-2 \), y así sucesivamente hasta llegar a la última ecuación, que tendrá una sola incógnita. Hecho esto, se resuelve la última ecuación, a continuación la penúltima, y así hasta llegar a la primera. Es decir, el método de Gauss consiste en triangular la matriz de coeficientes.

\[

da_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a_{1n}x_n = b_1 \\
da_{22}x_2 + a_{23}x_3 + \cdots + a_{2n}x_n = b_2 \\
\vdots \\
da_{nn}x_n = b_n
\]

Esto significa que se deben eliminar \(x_1 \) en la segunda ecuación, \(x_1 \) y \(x_2 \) en la tercera ecuación, \(x_1, x_2 \) y \(x_3 \) en la tercera ecuación, etc. Finalmente en la última ecuación, se deben eliminar todos los coeficientes excepto el de la variable \(x_n \). Una vez que se modificaron todas las ecuaciones, la solución es completada por sustitución desde la última ecuación hacia las anteriores.

Ejemplos.
Resolver los siguientes sistemas de ecuaciones:

\[
\begin{pmatrix}
-2 & 1 & -4 & 1 & 4 & -2 \\
1 & -3 & 5 & -3 & 5 & 1 \\
-3 & 4 & 1 & 4 & 1 & 3 \\
3 & 4 & -1 & 4 & 1 & 3 \\
-2 & 1 & -4 & 1 & 4 & -2
\end{pmatrix}
= \begin{pmatrix}
5 & 17 & 14 \\
13 & -23 & 14 \\
11 & 15 & -14
\end{pmatrix}
\]

\[
A^{-1} = \frac{1}{112} \cdot \text{Adj } A = \frac{1}{112} \begin{pmatrix}
5 & 17 & 14 \\
13 & -23 & 14 \\
11 & 15 & -14
\end{pmatrix} = \begin{pmatrix}
\frac{5}{112} & \frac{17}{112} & \frac{14}{112} \\
\frac{13}{112} & -\frac{23}{112} & \frac{14}{112} \\
\frac{11}{112} & \frac{15}{112} & -\frac{14}{112}
\end{pmatrix}
\]

\[
[A^{-1}] \cdot [B] = \begin{pmatrix}
\frac{5}{112} & \frac{17}{112} & \frac{14}{112} \\
\frac{13}{112} & -\frac{23}{112} & \frac{14}{112} \\
\frac{11}{112} & \frac{15}{112} & -\frac{14}{112}
\end{pmatrix} \begin{pmatrix}
11 \\
5 \\
-26
\end{pmatrix} = \begin{pmatrix}
\frac{55}{112} + \frac{85}{112} - \frac{364}{112} \\
\frac{112}{112} - \frac{112}{112} - \frac{112}{112} + \frac{364}{112} \\
\frac{112}{112} + \frac{75}{112} + \frac{364}{112}
\end{pmatrix} = \begin{pmatrix}
\frac{-224}{112} \\
\frac{-336}{112} \\
\frac{560}{112}
\end{pmatrix} = \begin{pmatrix}
-2 \\
-3 \\
5
\end{pmatrix}
\]

\[\therefore x = -2; \quad y = -3; \quad z = 5\]
1) \[
\begin{align*}
5x + 2y &= 16 \quad (1) \\
4x + 3y &= 10 \quad (2)
\end{align*}
\]
Solución.

multiplicando la ecuación (1) por \(\frac{1}{5}\): \[
\begin{align*}
x + \frac{2}{5} y &= \frac{16}{5} \quad (1')
\end{align*}
\]

multiplicando la ecuación (1) por \(-\frac{4}{5}\) y se suma a la ecuación (2): \[
\begin{align*}
\frac{7}{5} y &= -\frac{14}{5} \quad (2')
\end{align*}
\]

multiplicando la ecuación (2') por \(\frac{5}{7}\): \[
\begin{align*}
y &= -2
\end{align*}
\]

conocida \(y\), se sustituye en \((1')\) y se despeja \(x\), terminando el proceso:

\[
\begin{align*}
x &= \frac{16}{5} - \frac{2}{5} (-2) = \frac{16}{5} + \frac{4}{5} = \frac{20}{5} = 4
\end{align*}
\]

\[
\begin{align*}
\therefore \quad x &= 4; \quad y = -2
\end{align*}
\]

2) \[
\begin{align*}
3x_1 + 2x_2 + 7x_3 &= 4 \quad (1) \\
2x_1 + 3x_2 + x_3 &= 5 \quad (2) \\
3x_1 + 4x_2 + x_3 &= 7 \quad (3)
\end{align*}
\]
Solución.

Multiplicando la ecuación (1) por \(\frac{1}{3}\): \[
\begin{align*}
x_1 + \frac{2}{3} x_2 + \frac{7}{3} x_3 &= \frac{4}{3} \quad (1')
\end{align*}
\]

multiplicando la ecuación (1) por \(-\frac{2}{3}\) y se suma a la ecuación (2): \[
\begin{align*}
\frac{5}{3} x_2 - \frac{11}{3} x_3 &= \frac{7}{3} \quad (2')
\end{align*}
\]

multiplicando la ecuación (2') por \(\frac{3}{5}\): \[
\begin{align*}
x_2 - \frac{11}{5} x_3 &= \frac{7}{5} \quad (2'')
\end{align*}
\]

multiplicando la ecuación (1) por \(-1\) y se suma a la ecuación (3): \[
\begin{align*}
2x_2 - 6x_3 &= 3 \quad (3')
\end{align*}
\]

multiplicando la ecuación (2') por \(-\frac{6}{5}\) y se suma a la ecuación (3'):

\[
\begin{align*}
-\frac{8}{5} x_3 &= \frac{1}{5} \quad (3'')
\end{align*}
\]
A fin de apreciar mejor el resultado, se adopta el siguiente orden:

\[
\begin{align*}
 x_1 + \frac{2}{3} x_2 + \frac{7}{3} x_3 &= \frac{4}{3} \quad (1') \\
x_2 - \frac{11}{5} x_3 &= \frac{7}{5} \quad (2'') \\
-\frac{8}{5} x_3 &= \frac{1}{5} \quad (3''')
\end{align*}
\]

se observa que se debe convertir en 1 el coeficiente de \(x_3 \) de \((3''')\) para obtener la solución de esa variable y comenzar la solución hacia atrás, así que se multiplica dicha ecuación por \(-\frac{5}{8}\):

\[
x_3 = \frac{1}{8}
\]

conocida \(x_3 \), se sustituye en \((2'')\) y se despeja \(x_2 \):

\[
x_2 = \frac{7}{5} + \frac{11}{5} \left(-\frac{1}{8} \right) = \frac{9}{8}
\]

estos dos valores se sustituyen en \((1')\) y se despeja \(x_1 \), terminando el proceso:

\[
x_1 = \frac{4}{3} - \frac{2}{3} \left(\frac{9}{8} \right) - \frac{7}{3} \left(-\frac{1}{8} \right) = \frac{7}{8}
\]

\[
\therefore \quad x_1 = \frac{7}{8}; \quad x_2 = \frac{9}{8}; \quad x_3 = \frac{1}{8}
\]

V.6.3 REGLA DE CRAMER

La regla de Cramer es aplicable para aquellos sistemas que tienen igual número de ecuaciones que de incógnitas \((n = m) \) y el determinante de la matriz de coeficientes es distinto de cero. Es decir, para sistemas de que tienen siempre una solución única (compatibles determinados).

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
\vdots & \quad \vdots & \quad \vdots & \quad \vdots \\
a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n &= b_n
\end{align*}
\]

El valor de cada incógnita \(x_j \) se obtiene de un cociente cuyo denominador es el determinante de la matriz de coeficientes y cuyo numerador es el determinante que se obtiene al cambiar la columna \(j \) del determinante de la matriz de coeficientes por la columna de los términos independientes.

Ejemplos.

Resolver los siguientes sistemas de ecuaciones:

\[
\begin{align*}
 3x_1 - 4x_2 &= 23 \\
 5x_1 + 6x_2 &= 13
\end{align*}
\]

Solución.
\[\Delta = \begin{vmatrix} 3 & -4 \\ 5 & 6 \end{vmatrix} = 18 + 20 = 38 \]

Para calcular \(x_1 \), se sustituyen los términos independientes en la primera columna:
\[x_1 = \frac{\Delta_{11}}{\Delta} = \frac{23 - 4}{13 - 6} = \frac{138 + 52}{38} = \frac{190}{38} = 5 \]

Para calcular \(x_2 \), se sustituyen los términos independientes en la segunda columna:
\[x_2 = \frac{\Delta_{21}}{\Delta} = \frac{3 - 23}{5 - 13} = \frac{39 - 115}{38} = \frac{-76}{38} = -2 \]

\[\therefore x_1 = 5; \ x_2 = -2 \]

\[
\begin{align*}
2x - 3y + 7z &= 21 \\
4x - y + 10z &= 28 \\
-6x - 9y - 3z &= -9
\end{align*}
\]

Solución:
\[\Delta = \begin{vmatrix} 2 & -3 & 7 \\ 4 & -1 & 10 \\ -6 & -9 & -3 \end{vmatrix} = 6 - 252 + 180 - 42 - 36 + 180 = 36 \]

Para calcular \(x_1 \), se sustituyen los términos independientes en la primera columna:
\[x = \frac{\Delta_{11}}{\Delta} = \frac{21 - 3}{28 - 1} = \frac{63 - 1764 + 270 - 63 - 252 + 1890}{36} = \frac{144}{36} = 4 \]

Para calcular \(y \), se sustituyen los términos independientes en la segunda columna:
\[y = \frac{\Delta_{21}}{\Delta} = \frac{-6 - 9}{28 - 1} = \frac{-168 - 252 - 1260 + 1176 + 252 + 180}{36} = \frac{-72}{36} = -2 \]

Para calcular \(z \), se sustituyen los términos independientes en la tercera columna:
\[z = \frac{\Delta_{31}}{\Delta} = \frac{-6 - 9}{28 - 1} = \frac{18 - 756 + 504 - 126 - 108 + 504}{36} = \frac{36}{36} = 1 \]

\[\therefore x = 4; \ y = -2; \ z = 1 \]